WIN32/INDUSTROYER

A new threat for industrial
control systems

Anton Cherepanov, ESET
Version 2017-06-12

WIN32/INDUSTROYER

CONTENTS

Win32/Industroyer: a new threat for industrial control Systems. 1
Main backdoor 2
Additional backdoor. 4
Launcher COMpoNeNnt L 4
101 payload COMPONENT o 5
104 payload COMPONENT. o 6
61850 payload COMPONENT 8
OPC DA payload COMPONENT. o o 10
Data Wiper COMPONENT o o 12
AddItional tooIs. . . . o L 13

POt SCANNEr tOOl o 13

DOSTOOL. . . o o 13
CONCIUSION . o o o 14

Indicators of Compromise (I0C) 14

WIN32/INDUSTROYER

WIN32/INDUSTROYER:

A NEW THREAT FOR INDUSTRIAL CONTROL SYSTEMS

Win32/Industroyer is a sophisticated piece of malware de-
signed to disrupt the working processes of industrial control
systems (ICS), specifically industrial control systems used in
electrical substations.

Those behind the Win32/Industroyer malware have a deep
knowledge and understanding of industrial control systems
and, specifically, the industrial protocols used in electric
power systems. Moreover, it seems very unlikely anyone
could write and test such malware without access to the
specialized equipment used in the specific, targeted indus-
trial environment.

Support for four different industrial control protocols, speci-
fied in the standards listed below, has been implemented by
the malware authors:

e |EC 60870-5-101 (aka IEC 107)

* |EC 60870-5-104 (aka IEC 104)

* |EC 61850

» OLE for Process Control Data Access (OPC DA)

In addition to all that, the malware authors also wrote a tool
that implements a denial-of-service (DoS) attack against a
particular family of protection relays, specifically the Siemens
SIPROTEC range.

All this considered, the Win32/Industroyer malware authors
show an intensive focus that suggests they are highly spe-
cialized in industrial control systems.

MAIN BACKDOOR

CONTROLS

INSTALLS

EXECUTES

INSTALLS

The capabilities of this malware are significant. When com-
pared to the toolset used by threat actors in the 2015 at-
tacks against the Ukrainian power grid which culminated
in a black out on December 23, 2015 (BlackEnergy, KillDisk,
and other components, including legitimate remote access
software) the gang behind Industroyer are more advanced,
since they went to great lengths to create malware capa-
ble of directly controlling switches and circuit breakers. We
have seen indications that this malware could have been
the tool used by attackers to cause the power outage in
Ukraine in December 2016, although at the time of writing,
itis not confirmed, and the investigation is still ongoing. The
infection vector remains unknown.

The malware contains multiple modules, as analyzed and
described in the next sections of this whitepaper. Howev-
er, before diving into those details, the following simplified
schematic shows the connections between the compo-
nents of the malware.

See Fig. 1 below.

While some components (e.g. Data wiper) are similar in
concept to the 2015 BlackEnergy attacks against power grid
companies in Ukraine, we don't see any link between those
attacks and the code in this malware.

ADDITIONAL
BACKDOOR

ADDITIONAL
TOOLS

*

. DATA WIPER

101 PAYLOAD 104 PAYLOAD 61850 PAYLOAD OPC DA PAYLOAD
Figure1.
Simplified schematic of Win32/

Industroyer components.

http://w3.siemens.com/smartgrid/global/en/products-systems-solutions/protection/pages/overview.aspx
http://w3.siemens.com/smartgrid/global/en/products-systems-solutions/protection/pages/overview.aspx
http://www.welivesecurity.com/2016/01/03/blackenergy-sshbeardoor-details-2015-attacks-ukrainian-news-media-electric-industry/

MAIN BACKDOOR

We refer to the core component of Industroyer as the main
backdoor. The main backdoor is used by the attackers be-
hind Industroyer to control all other components of the
malware.

As backdoors go, this component is pretty straightforward,
connecting to its remote C&C server using HTTPS and re-
ceiving commands from the attackers. All analyzed samples
are hardcoded to use the same proxy address, located in
the local network. Thus, the backdoor is clearly designed to
work only in one specific organization. It is also worth men-
tioning that most of the C&C servers used by this backdoor
are running Tor software.

Perhaps the most interesting feature of this backdoor is
that attackers can define a specific hour of the day when
the backdoor will be active. For example, the attackers can
modify the backdoor in this way so it will communicate
with its C&C server only outside working hours. This can
make detection based only on network traffic examination
harder. However, all the samples analyzed so far are set to
work 24 hours round the clock.

1int main_loop()

24

3 struct _SYSIEMILME Systemlime; /7 |esp+un]| |ebp-14n s
4 DWORD dwHillisevuwnds; /¢ [esp10h] [ebp-4h]@2

6 SctLastError{B8);

7 if { GetLastError({) *= ERROR_ALREADY_EXISTS)}

8 {

9 duHilliseconds = S000;

18 SetUnhandledExceptionFilter{TopLevelExceptionFilter);
1 if { tGetSystemiletrics{SH_CLEANBOOT))

12 {

13 i1f (create_imapl_handle())

14 1

15 while { 1)

16 4

17 rn

19 Sleep{duwlilliseconds);

28 GetLocalTime {&SystenTime);

21 ¥

22 uwhile { Systemlime.wHour >= 24u };

23 cZ_connect_and_execute_cnd(&dwiilliseconds);

Figure 2.
The decompiled main backdoor code has a check for time-of-day.

Once connected to its remote C&C server, the main back-
door component sends the following data in a POST-re-
quest:

 the globally unique identifier (GUID) string
for the current hardware profile retrieved via
GetCurrentHwProfile

» the version of the malware: 1.7e

e the hardcoded ID of the sample

» the result of any previously-received command

The hardcoded ID is used by the attacker as an identifier for
the infected machine. Across all analyzed samples we found
the following hardcoded ID values:

e DEF e DC-2-TEMP * SRV_WSUS

e DEF-C e DC-2 * SRV_DC-2

e DEF-WS e CES-MCcA-TEMP e« SCE-WSUSOI
 DEF-EP e CES

The main backdoor component supports the following commands:

Command ID Purpose

0 Execute a process

j—

Execute a process under a specific user account. Credentials for the account are supplied by the attacker

2 Download a file from C&C server

3 Copy a file

4 Execute a shell command

5 Execute a shell command under a specific user account. Credentials for the account are supplied by the attacker
6 Quit

7 Stop a service

8 Stop a service under a specific user account. Credentials for the account are supplied by the attacker

9 Start a service under a specific user account. Credentials for the account are supplied by the attacker

10 Replace "Image path" registry value for a service

WIN32/INDUSTROYER 3

Once the attackers obtain administrator privileges, they can
upgrade the installed backdoor to a more privileged version
that is executed as a Windows service program. To do this
they pick an existing, non-critical Windows service and re-
place its ImagePath registry value with the path of the new
backdoor’s binary.

The functionality of the main backdoor that works as a
Windows service is the same as just described. However,
there are two small differences: first the backdoor's version
is 11s, instead of 11e, and second, there is code obfuscation.
The code of this version of the backdoor is mixed with junk
assembly instructions.

-text:08483FD2
-text:08483FD2

-text :00403FDB
-text :80403FDD
-text :00403FE3

-text :00403FF7
-text :00403FFA
-text:004040080

main_func proc near

.text :86M03FD2 call $+5

.text :004083FD7

-text:@8403FD7 loc_L4B3FD7: ; CODE XREF: main_func+57]j
-Lexl :8904083FD7 3 mdin_func+5F} j
-text:08483FD7 add esp, 4

-text :08483FDA push ebp 5 lpOverlapped

-text:08403FES pus

-text :084B3FEG push BCX

-text :88MB3FE7 now eax, [ebp+18h]
-text:08403FEA Row dword_416198, eax
-text:08403FEF nov eax, [ebp+8]
-LexLl:08403FF2

-text: 08404002 nov plverlapped, eax

.text: 00404067 nov [ebp-8]. eax

text 08484004 lea eax, [ebp-8]

-text :0848400D push eax ; 1lpServiceStartTable
-text : 86848 G6E now dword ptr [ebp-h], offset ServiceMain

-text 08404815 call dszStartServiceCtrlDispatcherd

-text 98404818 ®0F al, al

-Llexl 8484810 muy esp, ebp

-text :08484081F pop ebp

-text 00404028 retn

[
2F9F%Ah

jz

short loc 464623
ecx

dword_ 416194, edax

L d 2 b+ AL
cmp edx, BESB93EF3h
jz short loc 404823
|

CODE XREF: WinMain(x,x,x,x)+14Tp
.text:l]l]nl]38[:l;l‘p

Figure 3.
The obfuscated assembly code of the main backdoor that works as a Windows service.

-text:010084AD5 lea eax, [ebp+var_58] -text:010084AD5 lea eax, [ebp+var_58]
.text:81084AD8 push eax -text:01004AD8 push eax

-text: 81864007 lea cax, [ebp+h] -text:6100MADY lea eax, [ebp+h]

.text:@188L4ADC push eax -text:g1804aDC push eax

-text:@1084ADD push BB @h -text:01064ADD push BB @h

-Text:I01004REZ push nWnd - LexL:81004AE2 push I

.text:01004AES mow stru_180A688.15tructSize, 58h ||.text:01004AES mov stru_180A688.15tructSize, 58h
.text:01004AF2 mov stru 100688 hundluner, edx .text:B810864AF2 mov stru_188A688.hwnd0wner, edx
.text:01004AF8 mow stru_180A680.nHaxFile, 184h -text:B100LAF8 mow stru_180a688.nHaxFile, 104h
-text:B1004B82 mow stru_180A588.15tructSize, 28h |.text:61004B02 mou stru_180A508.15tructSize, 28h
.text:B81884B6C mow stru_180a5868.hwndluner, edx -text:G1004B0OC mou stru_100A508.hwndOuner, edx
.text:@1084B12 call esi ; Sendiessagel -text:@1884B12 call esi ; SendHessageW
-text:01004B14 push [ebp+uvar_58] -text: 01004814 pusha

-text: 01004817 push [ebp+hn] -lexL:81884B 15 pushf

-text:@1004B1A push B8B1h -text 01004816 neg ebx

.text:01004B1F push hind .text:61004B18 shr eax, 1

.text: 010084825 call esi ; Sendiessagel -text: 01004618 dec ebx

.text: 81084827 push ebx -text:@1884B1C mou eax, 17B28BAFh
-text:8180hB28 push ebx - text:-01004B21 mou edi, 71CFC28h
-text:o1004B829 push BB7h -text 01004826 or edi, dword_10895C7
.text:81884B2E push htind -text:01004B82C Xor esi, 1C779E91h

-Text: 01004634 call esl ; sendressageW -lexL-010604B32 xur BdX, Pdx

.text:68108L4B36 push ebx -text:B100LB3L dec edi

.text:81084B37 call ds:GetKeyboardLayout -text: 810804835 rol esi, 5

.text:81084B3D and ax, 3FFh .text:01004B38 and esi, edi

.text:o1004B41 cmp az, 11h -text:01004B3A and esi, edi

-text:B106MBLE jnz chort loc_188hBS8 -text:-G100LB3C rol ede, &

.text:810BLBLT push 1 -text:B0180LB3F neg eax

-text:81004B49 push 1 -text 01004811 bdilg esi, eax

-[eXT 01004646 push apan - lexL:01004B643 ney ebx

text: 01004858 push hiind .text:61004B45 shr ebx, 5

.text:81084B56 call esi ; SendHessage¥ .text:810B4BA4S mou ecx, SE95422h

Figure 4.
Comparison between original Notepad binary code (at the left) and backdoored binary code.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms685967(v=vs.85).aspx

ADDITIONAL BACKDOOR

The additional backdoor provides an alternative persistence
mechanism that allows the attackers to regain access to
a targeted network in case the main backdoor is detected
and/or disabled.

This backdoor is a trojanized version of the Windows Note-
pad application. This is a fully functional version of the ap-
plication, but the malware authors have inserted malicious
code that is executed each time the application is launched.
Once the attackers gain administrator privileges, they are
able to replace the legitimate Notepad manually.

LAUNCHER COMPONENT

This component is a separate executable responsible for
launching the payloads and the Data wiper component.

The Launcher component contains a specific time and date.
Analyzed samples contained two dates, 17" December 2016
and 20" December 2016. Once one of these dates is reached
the component creates two threads. The first thread makes
attempts to load a payload DLL, while the second thread
waits one or two hours (it depends on the Launcher com-
ponent version) and then attempts to load the Data wiper
component. The priority for both threads is set to THREAD
PRIORITY HIGHEST, which means that these two threads
receive a higher than normal share of CPU resources from
the operating system.

The name of the payload DLL is

The inserted malicious code is heavily obfuscated, but once
the code is decrypted it connects to a remote C&C server,
which is different to the one linked in the main backdoor, and
downloads a payload. This is in the form of shellcode that is
loaded directly into memory and executed. In addition, the
inserted code decrypts the original Windows Notepad code,
which is stored at the end of the file, and then passes execu-
tion to it. Thus, the Notepad application works as expected.
See Fig. 4 on previous page.

Each argument on the command line represents the fol-

lowing:

* SLAUNCHERS.exe is the filename of the Launcher
component

* 3$WORKING DIRECTORY% is the directory where the
payload DLL and configuration is stored

e %PAYLOADS%.d11 is the filename of the payload DLL

e %CONFIGURATIONS.ini isthe file that stores
configuration data for the specified payload. The
path to this file is supplied to the payload DLL by the
Launcher component

The payload and Data wiper components are standard
Windows DLL files. In order to be loaded by the Launcher
component they must export a function named Crash as
seen in Figure 5.

supplied by the attackers via a
command line parameter sup-
plied in one of the main back-
door's “execute a shell command”
commands. The Data wiper com-
ponent is always named haslo.
dat. The expected command lines
are of the form:

$LAUNCHERS% . exe
DIRECTORYS% %$PAYLOAD%.dll

SWORKING

Export directory

dd
dd
dw
dw
dd
dd
dd
dd
dd
dd
dd

for Crashied.dll

1] ; Characteristics
L8S5F8EDR ; TimeDateStamp: Sun Dec 18 02:48:13 2816
[i] : MajorUersion

[i] ; HinorUersion

rva aCrash161_dll ; Hame

1 : Base

1 ; Number0fFunctions

1 ; HumberDfHames

rva off_100355F8 ; AddressOfFunctions
rva off_1808355FC ; AddressOfHames

rva word_18835600 ; AddressO0fNHameOrdinals

Export Address Table

for Crashi81.dll

H

$CONFIGURATIONS.ini of f_10835578 dd rva Crash ; DATA HRLT: .rdata:188255CCTe
; Export Hames Table for Crash181.dll
H
off_188355FC dd rva aCrash ; DATA XREF: .rdata:1@8355FaTo

; "Crash™
; Export Ordinals Table for Crashi8i.dll
H
word_1uudsouy dw Y ; DAIA XEEF: .rdata:lduibsHalo
aCtrash181_d11 db ‘Crash161.d1l°,8 ; DATA XREF: .rdata:108355DCTo
acrash db 'Crash®,d : DATA XREF: .r'data:oFF_1BB355F[:TU
Figure 5.

Example payload DLL that has internal name Crash101.

dl1l and Crash export function.

WIN32/INDUSTROYER

101 PAYLOAD COMPONENT

This payload DLL has the filename 101.d11 and is named
after IEC101 (aka |EC 60870-5-101), an international standard
that describes a protocol for monitoring and controlling
electric power systems. The protocol is used for commu-
nication between industrial control systems and Remote
Terminal Units (RTUs). The actual communication is trans-
mitted through a serial connection.

The 101 payload component partly implements the protocol
described in the IEC 101 standard and is able to communi-
cate with an RTU or any other device with support for that
protocol.

Once executed, the 101 payload component parses the con-
figuration stored in its INI file. The configuration may con-
tain several entries: process name, Windows device names
(usually COM ports), the number of Information Object Ad-
dress (IOA) ranges, and the beginning and ending IOA val-
ues for the specified number of IOA ranges. IOA is a number
that identifies a particular data element in the device. Figure
6illustrates a 101 payload configuration file with two defined
IOA ranges, 10-15 and 20-25.

101_config.ini

real_proc

Figure 6.
An example of a 101 payload DLL configuration.

The name of the process specified in the configuration be-
longs to an application the attackers suspect is running on
the victim machine. It should be the application the victim
machine uses to communicate through serial connection
with the RTU. The 101 payload attempts to terminate the
specified process and starts to communicate with the spec-
ifiled device, using the CreateFile, WriteFile and Read-
File Windows API functions. The first COM port from the
configuration file is used for the actual communication and
the two other COM ports are just opened to prevent other
processes accessing them. Thus, the 101 payload component
is able to take over and maintain control of the RTU device.

This component iterates through all IOAs in the defined
IOA ranges. For each such IOA it constructs two “select
and execute” packets, one with a single command (C_sc_
NA 1) and one with a double command (Cc_bc_NaA 1) and
sends these to the RTU device. The main goal of the com-
ponent is to change the On/Off state of single command
type I0A and double command type I0A. Specifically, the
101 payload has three stages: in the first stage this com-
ponent attempts to switch I0As to their Off state, in the
second stage it attempts to invert I0A states to On, and
in the final stage the component switches I0A states to
Off again.

hex viewer

01 2 3 4 5 & 7 8 9 A B C D E F 012345
09 09 &8 73 01 2e 01 |06 00 Oa 00 &1 (34 186 h..hs.

object tree
~startBytel = @x68
~-blocklength = @x9
~blocklengthCopy = @x9
-startByte? = Bx68
d-controlField [ControlField]
Emdi' = false
: true
true
=fov = true
E----'Llnct:i.c:nCc:dE = USER_DATA_CONFIRM_EXPECTED
-linkAddress = @xl
~typeldentification = C_DC_NA_1
d-yariablestructureQualifierfField [StructureQualifierField]
Emsq = false
Lnumber = @x1
A-causedfTransmissionField [CauseQfTransmissionField]
LtestBit = false
i-positiveNegativeConfirmBit = false
fcauseDfTransmission = ACTIVATION
~gsdubdddress = axg
~informationObjectiddress = @xA
A-deo [DoubleCommandType]
fse = SELECT
quuali:iE’D:chwand = NO_ADDITIONAL_DEFINITION
i.doubleCommandState = COMMAND_OFF
~checksum = @x34
~stopByte = @x16

Figure7.
An example of a 101 payload packet, after being dissected in Kaitai
Struct WebIDE.

https://en.wikipedia.org/wiki/IEC_60870-5#IEC_60870-5-101

104 PAYLOAD COMPONENT

This payload DLL has the filename 104.dIl and is named af-
ter IEC 104 (aka |EC 60870-5-104), an international standard.
The IEC 104 protocol extends IEC 101, so the protocol can be
transmitted over a TCP/IP network.

Due to its highly configurable nature, this payload can be
customized by the attackers for different infrastructures.
Figure 8 shows what a configuration file may look like.

104.ini

Once executed, the 104 payload DLL attempts to read its
configuration file. As described above, the path for the con-
figuration file is supplied by the Launcher component.

The configuration contains a STATION section followed by
properties that configure how the 104 payload should work.
The configuration may contain multiple STATTON entries.

Figure 8.
An example of 104 payload DLL configuration.

Our analysis of this component reveals the following possible configuration properties:

Property Expected value Purpose

target_ip IP address The IP address that will be used for the communication using IEC 104 protocol standard
target_port Port number Self-explanatory

uselog lorO Enables or disables logging to a file

logfile Filename Specifies the filename for the log, if enabled

stop_comm_ lor0Q Enables or disables termination of the process

service

stop_comm_ Process name Specifies the process name that will be terminated

service_name

Timeout
in milliseconds

timeout

Specifies timeout between send and recv calls. Default value: 15000

Timeout
in milliseconds

socket_timeout

Specify the receiving timeout. Default value: 15000

silence lor0O Enables or disables console output

asdu Integer Specifies ASDU (Application Service Data Unit) address also known as sector
first_action on or off Specifies the Switch value in ASDU packet for first iteration

change TorO Specifies that the Switch value in ASDU packet should be inverted during iterations

def or short
or long or persist

command_type

Specifies command pulse duration for qualifier of command (QOC)

operation range or Specifies iteration type for Information Object Addresses (IOA)
sequence or shift

range Specific format Specifies range of Information Object Addresses (I0A)
of I0OAs

sequence Specific format Specifies sequence of Information Object Addresses (I0A)
of IOAs

shift Specific format Specifies shift of Information Object Addresses (IOA)

of IOAs

https://en.wikipedia.org/wiki/IEC_60870-5#IEC_60870-5-104

WIN32/INDUSTROYER

Once the configuration file is read, the 104 payload creates
a thread for each STATION section defined in the config-
uration file. In each such thread, the 104 payload will at-
tempt to communicate with the specified IP address using
the protocol described in the IEC 104 standard. Before the
connection is made, the 104 payload attempts to terminate
the legitimate process that is normally responsible for IEC
104 communication with the device. It does so only if the
stop_comm_service property is specified in its configu-
ration. By default, the 104 payload terminates the process
named D2MultiCommService.exe, Or the process name
specified in its configuration.

The main idea behind the 104 payload is relatively simple.
It connects to the specified IP address and starts to send
packets with the ASDU address that was defined in its con-
figuration. The goal of this communication is to interact
with an IOA of a single command type.

In the configuration file, the attacker can define the opera-
tion property to specify exactly how single command type
IOAs will be iterated.

The first such operation mode is the range mode. The
attackers use this mode in order to discover possible IOAs
in the targeted device. The attackers have to take this ap-
proach because the protocol described in the IEC 104 stan-
dard does not provide a specific method to obtain such in-
formation.

The range mode has two stages. During the first stage,
once the range of IOAs is obtained from the configuration
file, the 104 payload connects to the target IP address and
starts to iterate through the specified IOAs. To each such
IOA the 104 payload sends “select and execute” packets in
order to switch the state and to confirm whether the I0A
belongs to the single command type. See Fig. 9

Once all possible IOAs from the specified range are iterat-
ed, the 104 payload switches to the second stage of range
mode. If logging is enabled, the payload writes Starting
only success to the log. The rest of this second stage is
an infinite loop that uses the previously discovered IOAs of
single command type. In the loop the payload constantly
sends “select and execute” packets. In addition, if the option
change is defined, the payload flips the On/Off state be-
tween loop steps.

Figure 10 demonstrates the log file that was produced by
the 104 payload during our analysis. It shows the payload
iterated IOAs from 10 to 15, and once I0As of the single
command type were discovered, the payload started to use
them in the loop. The configuration had the change op-
tion enabled, so between loop iterations the payload flipped
the switch value from On to Off and wrote it to the log.
See Fig.10 on the right side.

The second operation mode is the shift mode. This is
very similar to the range mode. The attacker defines, in the
configuration file, a range of IOAs and shift values. Once the
104 payload is activated it does everything the same way as
in range mode; however, once all IOAs in the defined range
are iterated, it starts to iterate over the new range. The new
range is calculated by adding the shift values to the default
range values.

The third operation mode is the sequence mode. It can
be used by attackers once they know the values of all IOAs
of the single command type that are supported by the con-
nected device. This payload immediately executes an in-
finite loop, sending "select and execute” packets to the IOAs
defined in the configuration file.

Aside from its logging capability, the 104 payload can output
debug information to the console, as seen in Figure 11 on the
right side.

- IEC 6@87@-5-184-Apci: -> I (2,2)

TypeId: C_SC_NA_1 (45)

B.o.. ... = 5Q: False
ae@ eeal = NumIx: 1
..B8 1818 = CauseTx: ActTerm (18)
.B.. = Negative: False
Bavs waun = Test: False
OA: B
Addr: 1
4 TOA: 1@
I0A: 18
4 SC0: exel

....... 1 = ON/OFF: On
882 8@.. = QU: No pulse defined (@)
Boer wunn = S/E: Execute

» Internet Protocol Version 4, Src: 192.168.8.1, Dst: 192.168.8.2
» Transmission Control Protocol, Src Port: 2484, Dst Port: 49168, Seq: 39, Ack: 45, Len: 16

4 TEC 6@370-5-184-Asdu: ASDU=1 C_SC_NA 1 ActTerm IOA=18 'single command’

Figure 9.
An example of a 104 payload packet,
after being dissected by Wireshark.

BB Hiew: Ingfile.nat

logfile. tut
Start

Current switch value:ON

Search control signals Iound:

rting only

Done :

Figure10.
Example log file produced by the 104 payload.

61850 PAYLOAD COMPONENT

Unlike the 101 and 104 payloads, this payload component ex-
ists as a standalone malicious tool comprising an executable
named 61850.exe and the DLL 61850.d11. It is named
after the IEC 61850 standard. This standard describes a pro-
tocol used for multivendor communication among devices
that perform protection, automation, metering, monitoring,
and control of electrical substation automation systems.
The protocol is very complex and robust, but the 61850 pay-
load uses only a small subset of the protocol to produce its
disruptive effect.

Once executed, the 61850 payload DLL attempts to read
the configuration file, the path to which is supplied by the
Launcher component. The standalone version defaults to
reading its configuration from 1i.ini. The configuration
file is expected to contain a list of IP addresses of devices
capable of communicating via the protocol described in the
IEC 61850 standard.

If the configuration file is not present, then this component
enumerates all connected network adaptors to determine
their TCP/IP subnet masks. The 61850 payload then enu-
merates all possible IP addresses for each of these subnet
masks, and tries to connect to port 102 on each of those
addresses. Therefore, this component has the ability to dis-
cover relevant devices in the network automatically.

Otherwise, if a configuration file is present and it contains
target IP addresses, this component connects to port 102 on

B.8.1; vort=2484; ASDU=1

1l
H

a4
<08 =88 88

Bx3> i Lenygth:z6 byLes |
ARTDT con

MY xWH 2D Ml ¥Mb xM¥ xM1 xMH xUA xBH xHY

s | Sent=@ | Received-@
f
i
:
'

Telegram type: H_SC_NA_1

a4
B B0 xB2 B8 »2D »B1 »@7 00 x«B1 =00 B0 »08 »08

> 1| Length:1G bytes | Sent=8 | Received=-1
i I0A:1@ |

use: Activation confirm <(x7» | Telegram type: M_SC_HA_L <x2D>

Figure 11.
The console output of the 104 payload.

those IP addresses and on IP addresses that were discov-
ered automatically.

Once this component connects to a target host, it sends a
Connection Request packet using the Connection Oriented
Transport Protocol, as seen in Figure 12.

-
Ml Wireshark - Packet 5 - 61850

Internet Protocol Version 4, Src: 192.168.8.2, Dst: 192.168.8.1
TPKT, Version: 3, Length: 22
4 TS50 8873/X.224 COTP Connection-Oriented Transport Protocol
Length: 17
PDU Type: CR Connect Request (@x@e)
Destination reference: OxOGQ0
Suurce reflerence: @x8881
9999 = Class: @
- M Fxtended tormats: False
..@ = No explicit flow control: False
Parameter code: src tsap (@xcl)
Parameter length: 2
Source TSAP: @2
varameter code: dst-tsap (Hxc?)
Parameter length: 2
Destination TSAP: 0@81
Parameter code: tpdu-size (@xc@)
Parameter length: 1
TPOU size: 124

L

Figure 12.
A Connection Request packet, after dissection by Wireshark.

20 @c 29 a7 11 bc @0 8c 295 31 ff a4 00 00 45 @0) P, - PR
90 Je 82 1b 40 09 00 ©G ©@ 90 <0 of 00 92 <0 ad I P -
90 81 c@ 2b @0 66 ca b4 bc f1 f5 50 1d 38 50 18 sastiFun aaalPs

0030 40 29 51 54 00 @@ ©3 60 00 16 11 [60 00 @0 61 B)eevans wuafles
83 cl 92 90 22 c2 B2 8@ @1 @ el @a

Transmission Contrel Protocel, Src Port: 49195, Dst Port: 162, Seq: 1, Ack: 1, Len: 22

Nen 5 - Tiveres 4890445 - Soore: 192,188.0.2 - Destinations: 192, 160.0.1 - Predoeod: COTP - Lexwths 76 - Infln O TPOU sro~veds Qa0 chevel Sad000

Sarpel 1o |

C

https://en.wikipedia.org/wiki/IEC_61850

WIN32/INDUSTROYER

If the target device responds appropriately, the 61850 pay-
load then sends an InitiateRequest packet using the
Manufacturing Message Specification (MMS). If the expected
answer is received, it continues, sending an MMS getNam-
eList request. Thereby, the component compiles a list of
object names in a Virtual Manufacturing Device (VMD).

Next, this component enumerates the objects discovered
in the previous step and sends the device domain-specific
getNameList requests with each object name. This enu-
merates named variables in a specific domain.

See Fig. 13

Afterwards, the 61850 payload parses data received in re-
sponse to these requests, searching for variables that con-
tain following combinations of strings:

e CSW, CF, Pos, and Model

e CSW, ST, Pos, and stVal

« CSW, CO, Pos, Oper, but not $T

e CSW, CO, Pos, SBO, but not $T

The string CSW is a name for logical nodes, which are used
to control circuit breakers and switches.

For variables that contain the Model or stval string the
61850 payload sends an additional MMS Read request. For
some of the variables this component may also issue an
MMS wWrite request that will change its state.

The 61850 payload produces a log file of its operations that
contains the IP addresses, MMS domains, named variables
and the node states (open or closed) of its targets.

-
‘ Wireshark - Packet 13 - 51850

= | E S |

=

=

=

TPKT, Version: 3, Length: 62

=

=

IS0 8327-1 0OSI Session Protocol
IS0 B8327-1 OSI Session Protocel
> IS0 8823 0SI Presentation Protocol
4 MMS
4 confirmed-RequestPDU
invokeID: 2
4 confirmedServiceRequest: getNameList (1)
4 petNamelist

7

4 gbjectScope: domainSpecific (1)
domainSpecific: NAME GOES_HERE

Internet Protocol Version 4, Src: 192.168.8.2, Dst: 192.168.8.1 -
Transmission Control Protocol, Src Port: 49195, Dst Port: 182, Seq: 27@, Ack: 121, Len: 62

IS0 B8@73/X.224 COTP Connection-Oriented Transpert Protocol

> extendedObjectClass: objectClass (@)

m

28 48 @8 2@

ac ee aa a3
3@ 2f 82 e1

ae

@l 2a a@ 28
81

a2

1la ¢

@8 B2 B2 cd as @@ 82
2b @@ 66 ea b4 bd fe f5 58 1d be
ea @@ 3e @2 fe a8 el
a3 al

m

No.: 13 - Timer 8251961 - Source: 192.168.0.2 - Destination: 192.188.0.1 * Protocol: MMS « Length: 118 « Infor confirmed-RequestPDU

[3aKpbITh][CnpaBka

Figure 13.
The dissected MMS getNameList request in Wireshark.

https://en.wikipedia.org/wiki/Manufacturing_Message_Specification

OPC DA PAYLOAD COMPONENT

The OPC DA payload component implements a client for
the protocol described in the OPC Data Access specification.
OPC (OLE for Process Control) is a software standard and
specification that is based on Microsoft technologies such
as OLE, COM, and DCOM. The Data Access (DA) part of the
OPC specification allows real-time data exchange between
distributed components, based on a client—server model.

This component exists as a standalone malicious tool with
the filename opc.exe and a DLL, which implement both
61850 and OPC DA payload functionalities. This DLL is
named, internally in PE export table, 0pcClientDemo.dl11,
suggesting that the code of this component may be based
on the open source project OPC Client.

: Export Address Table for OPCClientDemo.dll
;FF_199396?8 dd rva Crash ; DATA XREF: .rdata:1883966CTo
; Export Hames Table for OPCClientDemo.dll
;FF_199396?E dd rva aCrash ; DATA XREF: .rdata:188396708To
; "Crash”
Figure 14.

The PE export reveals the internal DLL name of the OPC DA payload.

The OPC DA payload does not require any kind of config-
uration file. Once executed by the attacker, it enumerates
all OPC servers using the ICatInformation::EnumC-
lassesOfCategories method with CATID OPCDAServ-
er20 category identifierand TOPCServer: :GetStatus to
identify the ones running.

Next the component uses the IOPCBrowseServerAd-
dressSpace interface to enumerate all OPC items on the
server. Specifically, it looks for items that contain the fol-
lowing strings in their name:

e ctlSelOn

e ctlOperOn

e ctlSelOff

o ctlOperOff

* \Pos and stVal

The names of these items may suggest that attackers are
interested in OPC items provided by OPC servers that be-
long to solutions from ABB, such as their MicroSCADA range.
Figure 15 demonstrates an example list of OPC items that
contain names with similar strings. This list of OPC items
is received by the OPC Process Objects List Tool from ABB.

See Fig. 15 on the next page

The attackers use the string Abdul when they add a new
OPC group. Possibly this string is used by the attackers as a
slang term when referring to the ABB solutions.

See Fig.16 on the next page

On the final step, the OPC DA payload attempts to change
the state of discovered OPC items using the TOPCSyncIO
interface by writing the 0x01 value twice.

See Fig. 17 on the next page

The component writes the OPC server name, OPC item
name state, quality code and value to the log file. The logged
values are separated with the following headers:

e [*ServerName: %SERVERNAME%] [State: Before]

e [*ServerName: %SERVERNAME%] [State: After ON]
e [*ServerName: %SERVERNAME%] [State: After OFF]

https://en.wikipedia.org/wiki/OPC_Data_Access
https://en.wikipedia.org/wiki/Open_Platform_Communications
https://sourceforge.net/projects/opcclient/
http://new.abb.com/
http://new.abb.com/substation-automation/products/software/microscada-pro

WIN32/INDUSTROYER

=Y ore s O oo T ™ =

Fie Edit Took Help

W FEH W ow o W = IFllhu[s] inUse User-defined sthibute: If‘lunc Ll

Ohiect | Ohiect Idersifier | Signad Test | Rlock/Rit A | Station IN =
S262Q0F10 5TAZ STAZEZ Bieake pusilion indicatin 142 41 IECE1550 Subwtwrk REFD42 41.L01.Q0OCS W1 Fus wiVal
S28200:P1 STAZ STAZB2 Bresker open select command 5 Ll IECE1950 Subnebwork. REFSA2_41.L0 1. Q0OCSWI Pos.ciS «I0if
52B200F12 5TA2 STAZBZ Breaker close select command 6 4 IEC61850 Subretwork. REF542_41.LD1.00CSwI1 Fos.ctiSelDn
S2B200:F12 5TA2 STAZB2 Broaker opon ckocule command 7 L1l IECE1950 Subnctwork REFS42_41.LD1.Q0CSWI1 Pos.cll0pedif
SIRAOFIL ATa? STAYR? Rreakes chnee everife command & 41 IFCRIASN Subnelwork REFA42_41 101 OOCSWI Pre ciiNpeiln
S20200:M%S STA2 STA202 Dresker dewice conbiol black i} 4 ICCG1050 Subneterock NCMS42 41.L0D1.Q0CSWIT Dehostval
S2B200P16 STA2 STAZB2 Ereaker open intedocked 0418 1
SEB200FT 5TAZ STAZEZ Breaker close imerocked 06 41
S2B00Me STAZ STAZB2 Causc of interlocking 0 4
SZRIANPIA STA? STAZR? Rirakes selction on monitos n a1
52020020 GTA2 STAZD2 Dresker command event 016G 4 ICCG1050 Subrietwork. MEM542_41.LD1.00C5WI1 Pos Seld
S2H2UUFZA S182 SIAZEZ Breaker cancel command El a1 IELE1850 Subnetwork. HEFS42_41. L LUCSWIT Pos.cliCan
526201 P10 STAZ STAZEZ Discwen. pusbion infcation 144 4 IECE1350 Subwiebenk REFD42 41.L01.01CSWI2 Pos 2iVal
S28201P11 STA2 STAZB2 Discorn. open select command 50 M IECE1950 Subrietwork REF542_41.LD1.01CSWI2 Pos.ctiS elDif
SeB20TFZ 5TAZ STAZBZ Disconn. close select command 51 4 IECE1850 Subnetwork REFS42_41.L01.01C5WI2 Pos.cilSelln
S2B201:P12 5TAZ STAZB2 Disconn. open ckccute command 52 4 IECE1350 Subnctwork REFS42_41.LD1.01C5WI2 Poz.cll0peddif
SZRIMIPI4 GTA? STAPR? Disconn lnse puecule comman 53 41 IFCARTEAN Subnetwork REFS42_41 101 0 1CSWIZ Pos cliNpedin
5202015 GTA2 STAZDZ Discorn. device contiol block 7 £ ICCG1050 Subrietwork. MEM542 41.LD1.01C5WI2 Deh. sival

Figure 15.
An example of OPC items names in IN field received using OPC Process Objects List Tool.
IDA View-EIP

-text:6B269BC8 push edi ; ppUnk

-text:6B269BC? push offset IID_IOPCGroupStateMgt ; riid

-text:6B269BCE push [ebp+pRevisedUpdateRate] ; pRevisedUpdateRate

-text :6B269BD1 mov ecx, [eax+i]

-text:6B269BD4 lea eax, [ebx+18h]

-text:6B269BD7 push eax ; ph3erverGroup

-text :6B260BDE push a 5 dulCID

-text :6B269BDA lea eax, [ebp+pPercentDeadband]

-text:6B269BDD mouv edx, [ecx]

-LexL :6B2092BDF push edx 3 pPercvenlDeadband

-text :6B269BED mouvzx eax, [ebp+arg_4]

-text :6B269BE4 push B ; pTimeBias

-text:6B269BE6 push a ; hClientGroup

-text:6B269BE8 push [ebp+ppAddResults] ; duRequestedUpdateRate

-text :6B269BEB push eax : bActive

-text :6B269BEC push esi ; esi szHame

-text:6B269BED push ecx ; This

-text :6B240BEE call [edx+I0PCServerVUtbl ..AddGroup] dAbdul 8:

-text:6B260BF1 test eax, eax - unicode @, <Abdul>,®

-text:6B269BF3 jns short loc_6B269C30

-Lext :6B262?BF5 pusn offset aFalledToAddGro ; “Fallea to Rdd group™

-text :6B269BFA lea ecX, [ebp+lpHultiByteStr]

-text:6B269BFD call Brror_

Figure 16.

The disassembled code of the OPC DA component that uses the Abdul string.

text:0840834FE now eax, UT_I2

-text: 004035083 mow

-text:00LB350h mow eax, 1
.text:00408350F mow

-text: 08483516 lea eax, [ebp+pltemValues]
-text:00408351C push eax

-text:00848351D mov eax, [ebp+0PC_items]
_text:-00403523 mou ecx, [eax+esixh]
-text: 08483526 call I0PCSyncI0_Write
.text:08403528 conp esi, edi

.text 00403520 jo short loc_4@83539
.text:00408352F push 8808780857h
.text:08483534 call throw _exception

word ptr [ebp+pltemUalues.anonymous_0], ax

word ptr [ebp+pltemUalues.anonymous_B+8], ax

; pItemValues

Figure 17.

Disassembled code of OPC DA payload that uses T0PCSyncIO interface.

DATA WIPER COMPONENT

The data wiper component is a destructive module that is
used in the final stage of an attack. The attackers are using this
component to hide their tracks and to make recovery difficult.

This component has the filename haslo.dat or haslo.
exe and can be executed by the Launcher component or
used as a standalone malicious tool.

Once executed it attempts to enumerate all keys in the reg-
istry that list Windows services:

e HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Services

It attempts to set the registry value ImagePath with an
empty string in each of the entries found. This operation will
make the operating system unbootable.

The next step is actual deletion of file contents. The compo-
nent enumerates files with specific file extensions on all drives
connected to computer, from C:\ to Z:\. It should be noted
that during enumeration the component skips files that are
located in subdirectory that contains Wwindows in its name.

12

The component rewrites file content with meaningless data
obtained from newly allocated memory. In order to perform
this operation thoroughly the component attempts to re-
write files twice. The first attempt happens once the file is
found on a drive. If the first attempt is unsuccessful then the
wiper malware makes a second attempt, but before that the
malware terminates all processes except those included in a
list of critical system processes. The list of these processes is
displayed in Figure 18.

To speed up the wiping operation this component rewrites
only partial file content at the beginning of the file. The
amount of data to be rewritten depends on file size: the
smallest amount of data will be rewritten for files less than
or equal to IMb (4096 bytes); the largest amount of data will
be rewritten for files less than or equal to 10Mb (32768 bytes).

Finally, this component attempts to terminate all processes
(including system processes) except its own. This will result in
the system becoming unresponsive and eventually crashing.

off_18010E88 dd offset aAudiodg_exe ; DATA XREF: terminate processes:loc 180814708Tr

; "audiodg.exe™

dd offset aConhost_exe : "conhost_exe"

dd offset alsrss_exe ; "csrss.oexe"

dd offset aDwm_exe 3 dum.exe™

dd nffset aFxplnrer_pxe ; “explorer _pze"

dd offset alsass_exe ; "lsass.exe”

dd offset alsm_exe ; "lsm.exe™

dd offset aServices_exe : "services_exe"”

dd offset aShutdouwn_exe ; “shutdoun.exe”

dd offset aSmss_exe : "'smss . exe'

dd offset aSpoolss exe ; "spoolss._exe"

dd offset aSpoolsv_exe ; “spoolsu.exe”

dd offset aSuchost_exe ; "suchost.exe”

dd offset aTaskhost_exe ; “taskhost.exe"”

dd offset aWininit_exe ; "wininit.exe”

dd offset aWinlogon_exe ; “winlogon.exe"

dd offset alluauclt exe ; “wuauclt.exe”

Figure 18.

List of processes that are not
terminated on second rewriting
attempt.

The filename masks targeted by the data wiper component

to be overwritten are:

SYS_BASCON.COM

Y *pcmt *bkp
*PL “ini *log
*paf *xml *Zip
*XRF *CIN *rar
*tre “prj *tar
*SCL *oxm *7z

* bak “elb *exe
*.cid *epl *dll
*scd *mdf

*.pcmp *Idf

*pcmi * bk

This list contains filename extensions that are used in a
standard environment, such as Windows binaries (.exe/.dll),
archives (.7z / tar/.rar/.zip), backup files (.bak/.bk/.bkp), Mic-
rosoft SQL server files (.mdf/.Idf), and various configuration
files (.ini/.xml). In addition, the component also wipes files
that may be used in industrial control systems, such as files
written using Substation Configuration description Language
(.scl/.cid/.scd) and there are many files and file extensions
that are used by various products from ABB. For example, a
file named sYs BASCON.COM is used by ABB solutions for
storing configuration data, and files with the .paf (Prod-
uct Authorization File) filename extension are used
to store license data for ABB MicroSCADA products.

https://en.wikipedia.org/wiki/Substation_Configuration_Language

WIN32/INDUSTROYER

ADDITIONAL TOOLS

Port scanner tool

The attackers' arsenal includes a port scanner that can be
used to map the network and to find computers relevant to
their attack. Interestingly, instead of using software already
existing, the attackers built their own custom-made port
scanner. As is evident from Figure 19, the attacker can define
a range of IP addresses and a range of network ports that
are to be scanned by this tool.

See Fig. 19

B Administrator: C\Windows\system32\icmd.exe

C:s>port _exe
Error params Arguments???
Exhample -App.exe —ip= 127.8.6.1-188, 127.8.8.2-188 -ports= 86, 3351, 15-48

port.exe

Gz

DoS tool

Another tool from the attackers' arsenal is a Denial-of-Ser-
vice (DoS) tool that can be used against Siemens SIPROTEC
devices. This tool leverages the CVE-2015-5374 vulnerability
in order to render a device unresponsive. Once this vulner-
ability is successfully exploited, the target device stops re-
sponding to any commands until it is rebooted manually.

Toexploitthisvulnerability theattackershardcodedthedevice
IP addresses into this tool. Once the tool is executed it sends
specifically crafted packets to port 50,000 of the target IP
addresses using UDP. The UDP packet contains only 18 bytes.
See Fig. 20

= x|

Figure 19.
The port scanner tool usage example.

00000000 :

00000010: 28 9E

Figure 20.

11 49 00 @@ 00 00 00 @@ 00 06 00 @@ 00 00 00 00

Content of UDP packet used during exploitation of CVE-2015-5374.

https://ics-cert.us-cert.gov/advisories/ICSA-15-202-01

CONCLUSION

The investigation behind the Ukrainian power outage last
December is still ongoing and it is currently not confirmed
that the malware analyzed here was the direct cause. Nev-
ertheless, we believe that to be a very probable explanation,
as the malware is able to directly control switches and cir-
cuit breakers at power grid substations using four ICS pro-
tocols and contains an activation timestamp for December
17, 2016, the day of the power outage.

We can definitely say that the Win32/Industroyer malware
family is an advanced and sophisticated piece of malware
that is used against industrial control systems. However, it
should be noted that the malware itself is just a tool in the
hands of an even more advanced and very capable mali-
cious actor. Using logs produced by the toolset and highly
configurable payloads, the attackers could adapt the mal-
ware to any comparable environment.

The commonly-used industrial control protocols used in
this malware were designed decades ago without taking
security into consideration. Therefore, any intrusion into
an industrial network with systems using these protocols
should be considered as “game over”.

INDICATORS OF
COMPROMISE (10CQ)

SHA-1 hashes:

FO6C21F8189CEDGAELIS50F9EF2E82A3A57843B587D
CCCCE62996D578B984984426A024D9B250237533
8E39ECA1E48240C01EE570631AE8F0C9A9637187
2CB8230281B86FA944D3043AE906016C8B5984D9
79CA89711CDAEDBR16BOCCCCFDCFBDOAATES7120A
94488F214B165512D2FC0438A581F5C9E3BD4D4C
5A5FAFBC3FEC8D36FD57B075EBF34119BA3BFF04
B92149F046F00BB69DE329B8457D32C24726EE00
B335163E6EB854DF5E08E85026B2C3518891EDAS

IP addresses of C&C servers:
195.16.88[.]6

46.28.200[.1132

188.42.253[.]143

5.39.218[.]152

93.115.27[.157

Warning! Most of the servers with these IP addresses were
part of Tor network which means that the use of these in-
dicators could result in a false positive match.

welivesecurity

news, views and insight from the ESET security community

WeliveSecurity.com is where ESET experts are. The site is an
editorial outlet for internet security news, views and insight.
It covers relevant breaking news and aims to cater to all skill
levels by offering video tutorials, in-depth features and podcasts.

AboutUs Contact Us Go to ESET.COM In English +

welivesecurity

News, views, and insight from the ESET security community

Latest Research How To Multimedia ~ Papers Our Experts Type your keyword...

CYBERSECURITY

Industrial control security
practitioners wormy about
threats ... for a reason

HOAX '

Supermarkets and fishy
perfumes

RANSOMWARE CYBERATTACK '

TeleBots are back: Supply-chain Everything you need to

: : know about the latest
attacks against Ukraine variant of Petya

Following the WannaCryptor

Industrial control security practitioners worry about ransomware attack, will you:
threats ... for a reason

https://www.welivesecurity.com/
https://www.welivesecurity.com/
https://www.welivesecurity.com/

	Win32/Industroyer:
a new threat for industrial control systems

	Main backdoor

	Additional backdoor
	Launcher component
	101 payload component
	104 payload component
	61850 payload Component

	OPC DA payload component

	Data wiper component
	Additional tools
	Port scanner tool
	DoS tool

	Conclusion
	Indicators of Compromise (IoC)

